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SYMBOLS

ACy,
aux
vehicle incremental acceleration normal to flight path,

Ltrim
wing span, m (ft)

wing chord measured parallel to the plane of symmetry, m (ft)
5 b/2
mean aerodynamic chord of wing, §'./. c?2 dy, m (ft)

0
drag coefficient, %EE&

1lift coefficient,

1ift coefficient at ¢ = 0°

1ift coefficient without jet augmentation

jet-induced 1lift coefficient

lift-coefficient increment due to auxiliary flap deflection

rolling moment

rolling-moment coefficient about stability axis,

q.,Sb

rate of change of rolling-moment coefficient with sideslip

pitching moment

qSc

pitching-moment coefficient about 0.25c,

pitching-moment coefficient at zero 1ift

yawing moment
q,.Sb

yawing-moment coefficient about stability axis,

rate of change of yawing-moment coefficient with sideslip

engine total gross thrust coefficient, agg

-CO

engine net thrust coefficient, —=

o0
side force

side-force coefficient about stability axis, 9.5
00

static incremental axial force, N (1b)
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iv

gross-thrust with flaps undeflected and &3 = 0°, N (1b) (obtained
statically)

static incremental normal force due to flap deflection, N (1b)
resultant force, /FA2 + Fy2, N (1b)

acceleration of gravity, 9.81 m/sec? (32.2 ft/sec?)
horizontal-tail incidence, deg

free-stream dynamic pressure, N/m? (1lb/sq ft)

wing area, m?2 (sq ft)

gross thrust minus nacelle inlet ram drag
net thrust-to-weight ratio

1 g stall speed, m/sec (knots)

airplane gross weight, N (1b)

spanwise distance perpendicular to the plane of symmetry, m (ft)
angle of attack of fuselage, deg

angle of sideslip

flight-path angle, deg

jet exhaust deflector angle, deg (see fig. 2)

horizontal-tail elevator deflection, deg

trailing-edge auxiliary flap deflection relative to the main flap,
measured normal to the hinge line, deg

trailing-edge main flap deflection relative to the wing chord plane,
measured normal to the hinge line, deg

F
effective jet deflection angle obtained statically, tan” ! ﬁﬁ-, deg
A

slat deflection relative to the wing chord plane, measured per-
pendicular to the leading edge, deg



ng

wing semispan station, 5%7

flap-system static turning efficiency,

Subscript

uncorrected
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WIND-TUNNEL INVESTIGATION OF A LARGE 35° SWEPT-WING JET TRANSPORT MODEL
WITH AN EXTERNAL-FLOW JET-AUGMENTED DOUBLE-SLOTTED FLAP
Kiyoshi Aoyagi and Leo P. Hall

Ames Research Center
SUMMARY

An investigation has been conducted to determine the aerodynamic
characteristics of a large-scale subsonic jet transport model with an
externally jet-augmented flap system that would augment 1ift and provide
direct-1ift control. The model had a 35° swept wing of aspect ratio 7.82 and
four pod-mounted engines under the wing. The 1ift of the flap system was
augmented by impingement of the exhaust of the jet engines on the main flap
and a small auxiliary flap. The auxiliary flap may be used for providing
direct-1ift control. Results were obtained for several main and auxiliary
flap deflections at gross thrust coefficients of 0 to 2.0. Three-component
longitudinal data are presented with the operation of four and two engines.
Limited longitudinal and lateral data are presented with the operation of
three engines.

Some performance computations were made using the data of the investiga-
tion. These calculations predict that the aircraft with one engine inopera-
tive can have a rate of climb of 1.52 m/sec (300 ft/min) at a speed of
44.2 m/sec (86 knots) (1.2 Vg, 1 g flight) for takeoff and a rate of climb of
1.02 m/sec (200 ft/min) for a balked landing condition at an approach speed of
46.8 m/sec (91 knots, 1.3 Vg, 1 g flight) with a thrust-to-weight ratio of
0.375 and a wing loading of 4070 N/m? (85 psf). The calculations also predict
that the flap system is capable of providing *0.2 g incremental acceleration
normal to the flight path at an approach speed of 41.1 m/sec (80 knots) (1 g
flight, wing loading of 85 psf) with a thrust-to-weight ratio of 0.40.

INTRODUCTION

The principle of augmenting 1ift by directing jet engine exhaust toward
the trailing-edge flap surface is currently being considered in some STOL
turbofan transport designs. This principle was earlier reported in refer-
ences 1 through 3. The feasibility of using a small auxiliary flap attached
to a main flap for direct 1ift control has been demonstrated (refs. 4 and 5)
with a swept-wing transport model with a flap system externally jet-augmented
from two pod-mounted turbojet engines.

As part of continuing NASA STOL research, an investigation was undertaken
in the Ames 40- by 80-Foot Wind Tunnel to determine the aerodynamic character-
istics of a 35° swept-wing transport model with a flap system externally
jet-augmented from four pod-mounted jet engines.



The model was equipped with a double-slotted flap that consisted of a
main flap and a short chord auxiliary flap attached to the main flap. Results
were obtained with several main and auxiliary flap deflections at gross
thrust coefficients from 0 to 2.0. In addition, limited data were obtained
with the operation of two and three engines. Some calculations also were made
of the flight-path control capabilities of the flap system. The data were
obtained at Reynolds numbers from 2.0x10° to 2.9x10%, based on a mean aero-
dynamic chord of 1.59 m (5.22 ft) and at dynamic pressures of 215 to 479 N/m?
(4.5 to 10.0 psf).

MODEL AND APPARATUS

Figure 1 is a photograph of the model in the 40- by 80-foot wind tunnel.
Pertinent dimensions of the model are given in figure 2(a). The model was
equipped with four T-58-6A engines modified to operate as conventional jet
engines.

Wing

The basic wing had a quarter chord sweep of 35°, an aspect ratio of 7.82,
a dihedral of 6°, and an incidence of 2°. The airfoil section had an NACA
65-012 thickness distribution at the root tapering linearly to an NACA 65-009
thickness distribution at the tip with a 230 mean line at these sections.
The mean aerodynamic chord was 1.59 m (5.22 ft).

Leading-Edge Slats

The wing was equipped with full span 0.15c leading-edge slats except for
breaks at each side of the nacelle pylons. The slats (fig. 2(b)) were
deflected 35° with respect to the wing chord plane from n = 0.11 to 0.48 and
45° from n = 0.50 to 1.0 when the flaps were deflected. For flaps
undeflected the slats were deflected 35°. The slats were in the extended
position throughout the investigation.

Trailing-Edge Flap System

Flap details- The flap system was composed of a main flap and an auxiliary
flap with fixed pivot points as shown in figure 2(c). Both flaps extended
from 0.11 to 0.68 semispan with a break at 0.37 semispan and could be
deflected 0° to 50° normal to their respective pivot lines. The total flap
chord (main plus auxiliary flap chord) was 0.30 of the wing chord, and the
auxiliary flap chord was 0.33 of the total flap chord.

Main and auxiliary flap arrangement- When the main flap was deflected,
the flap left a 0.01 c gap below the shrouded wing trailing edge (located at
0.80 c¢), and the flap leading-edge location varied from 0.03 c forward of the
0.80 ¢ line at a deflection of 20° to coincident with the 0.80 ¢ line at a

2



deflection of 50° (see fig. 2(d)). The auxiliary flap was deflected from a
fixed pivot point with a gap at the shrouded main flap trailing edge as shown
in figure 2(d). Both flaps were deflected over the full spanwise extent
(0.11 to 0.68 n) throughout the investigation.

Fuselage and Tail

The fuselage had a constant 1.22 m (4-ft) diameter except at the nose and
tail. The nose section had elliptical outlines with circular cross sections;
the tail section had transitions which tapered from a 1.22 m (4-ft) circular
section to a small elliptical section at the rear.

The geometry of the horizontal and vertical tails is shown in figure 2(a).
The rudder was fixed at 0°, and the horizontal tail incidence and elevator
deflection were held at 0° throughout the investigation.

Engines

T-58-6A engines, modified to operate as conventional jet engines, were
located at 0.28 and 0.49 of the wing semispan. The engine centerline was
pitched 4.5° down to provide a better jet exhaust impingement on the flap sur-
faces. A 0.28 m (0.91 ft)-diameter ejector, 0.72 m (2.36 ft) long, and a
faired leading-edge radius of 0.024 m (0.08 ft) (fig. 2(d)) was located behind
the conventional tailpipe of each engine. 1Its purpose was to stimulate the
jet exhaust wake of a turbofan jet engine. The combined ejector and jet
exhaust flow provided external jet augmentation on the trailing-edge flap sur-
face. A jet exhaust deflector was located behind the ejector, and was pivoted
as shown in figure 2(d). The deflector had a constant chord of 0.36 m (1.17 ft)
and a span equal to the ejector diameter. It was pivoted 15° from the engine
centerline when the flaps were deflected, and 0° was used when the flaps were
undeflected.

TESTING AND PROCEDURE

Tests were conducted at Reynolds numbers from 2.0x10° to 2.9x10%, based on
a mean aerodynamic chord of 1.59 m (5.22 ft) and dynamic pressures of 215 to
479 N/m? (4.5 and 10.0 psf), respectively. Force and moment measurements were
made in most cases through the angle-of-attack range of -4° to 20°.

Tests With Constant Cg and Varying Angle of Attack

A constant Cp value was maintained as angle of attack was varied for
each flap configuration tested. With the operation of each engine at equal
thrust several nominal Cp values were investigated by varying thrust and/or
dynamic pressure as shown below.



qu’
CT (4 Eng}nﬁ;) N/m2 (psE)

0 479 (10.0)
.25 479 (10.0)
.50 479 (10.0)

1.0 431 (9.0)

1.4 311 (6.5)

2.0 215  (4.5)

The C values were based on the calibration of the engine static thrust vari-

ation with engine rpm with both the flaps and jet exhaust deflector at 0°.

Main flap deflections (Sf ) of 20°, 30°, 40°, and 50° were tested with auxil-
m

iary flap deflections (éf ) of 0°, 20°, 40°, and 50° for each Gf except
aux m
the maximum §. was 40° for 8¢ = 30°. Tests were run with the plain wing
aux m
(flaps up) at CT values of 0, 0.50, and 1.0.

The data obtained with the operation of two inboard engines with symmetri-
cal thrust were limited to main and auxiliary flap deflection of 40° at

CT = 0.26, 0.51, and 1.05.

The data obtained with the operation of three engines at approximately
equal thrust (left hand outboard engine inoperative) were limited to main flap
deflections of 20° and 40° for auxiliary flap deflection of 20° at Cp = 0.19,
0.39, 0.76, 1.0, and 1.6. These values were approximately 75 percent of those
used with four engines. In addition, one asymmetrical auxiliary flap condi-
tion (40° (left hand side) and 0° (right hand side)) with main flap deflected
40° was tested at these same thrust coefficient values.

Tests With Constant C; and Varying Angle of Sideslip

A constant Cp value was maintained at an angle of attack of 4° and 8°
as sideslip was varied from 4° to -16°. The C; values examined were 0, 1.0,
and 1.4 (four engines operating) and 0.76 and 1.08 with three engines (out-
board left engine inoperative). All tests were run with each engine set at
equal thrust. These tests were limited to main flap deflection of 40° and an
auxiliary flap deflection of 20°.

CORRECTIONS

The data were corrected for strut tares and wind-tunnel wall effects,.
The tunnel-wall corrections were as follows:



Q
]

o, + 0.375Cy,

Cp = Cp_ + 0.0065C; 2

Cp,, *+ 0.0122C

1]

Cm

RESULTS AND DISCUSSION

The basic force data obtained from this investigation are presented in
figures 3 through 21. An index to these basic data is given in table 1.
Gross thrust coefficient was used as a parameter since the total exit momentum
of the jet affects the augmentation of the flap lift. The relationship
between gross thrust and net thrust coefficients is shown in figure 3. Parts
of the basic data were used to estimate flight-path control characteristics
during takeoff and descent with auxiliary flap. These results are presented
in figures 22 through 33.

Longitudinal Characteristics of the Model With Plain Wing

The longitudinal characteristics of the model with and without power is
shown in figure 4. The effect of four engines with Cp = 1.0 was to increase
lift-curve slope 31 percent and CLpax by 27 percent. Approximately half of

this increase was thrust and the remainder was jet-induced effect. Lift coef-
ficient values for angles of attack below 5° were less with power on than with
power off, indicating that a negative pressure field is induced on the under-
side of the wing by the adjacent jet flow with 4.5° engine tilt. The static
margin obtained with power on was essentially the same as that obtained with

power off. However, a positive Cj shift occurred with increasing power.
o

Longitudinal Characteristics of the Model With Flap Deflection
and Four Engines Operating

Effect of variable angle of attack- The longitudinal characteristics of
the model with main flap deflection of 20°, 30°, 40°, and 50° at several auxil-
iary flap deflections are shown in figures 5, 6, 7, and 8, respectively.
These figures show that jet augmentation (Ct values) and auxiliary flap deflec-
tion increased the 1ift coefficient but did not significantly affect the slope
of the linear portion of the lift curve. In addition the upper limit of the
region of constant lift-curve slope was extended from an angle of attack of 4°
to 10° when C7 value increased from 0.25 to 1.0. Figure 9 shows the varia-
tion of trimmed CLmax with auxiliary flap deflection at several main flap

deflections. This figure shows that maximum trimmed 1ift coefficient increased
with jet augmentation and with auxiliary flap deflection up to 40° for all

main flap deflections investigated. A maximum trimmed Cj of 5.25 was
obtained at afm = 50° and S g = 40° with a Cp value of 2.0. Note that

for a constant auxiliary flap deflection the angle of attack at maximum 1ift
did not significantly increase with jet augmentation.



Neither jet augmentation nor auxiliary flap deflection affected the
longitudinal stability of the model below the stall angle but both did pro-
duce large nose-down pitching moments (see figs. 5 through 8). Static margin
was reduced with jet augmentation compared to that without jet augmentation.
For example, at Gf = 40° and Sfaux = 20° there was approximately a 45 percent

m
reduction between Cy = 0 and 2.0.

Analysis of Lift with jet augmentation at 0° angle of attack- The total
1lift for a given flap chord and deflection is the sum of the 1lift without jet
augmentation, effective jet reaction [sin(dj + a)nfCT], and jet induced 1lift.

The 1ift component due to jet augmentation is therefore dependent on the
effectiveness of the flap system in turning the jet. Figure 10 shows the
variation of static jet turning angle and turning efficiency with auxiliary
flap deflection, Gfaux' With Gfaux = 0° the effective jet turning angle was

always less than the geometric main flap deflection &8¢ , ranging from 73 per-
m
cent of &g = 20° to 82 percent of &g = 50°. With 3¢ = 50° the effec-
m m aux
tive jet turning angle §j increased an additional 30° for 8g, = 20°, 30°,
and 40° and 26° for Sgn = 50°. The static resultant force due to the jet

decreased with increasing main and auxiliary flap deflections because of the
turning losses (shown in fig. 10(b)). Static jet turning efficiency ranged

from 79 percent to 70 percent at &g = 0° and from 62 percent to 46 percent
aux
at &g = 50° for & = 20° and 50°, respectively.
aux m

The 1ift components at Gfm = 20° and 50° for o = 0° and several auxil-

iary flap deflections are shown in figure 11. The jet-induced 1lift is based
on the effective jet turning angle and turning efficiency shown in figure 10.
Figures 11(a) and (b) show that the jet-induced 1ift (CLF) becomes larger as

Cr increases. For example, at Cp = 2.0 and 6f, ., = 40° this 1ift component

accounted for as much as 54 percent of the total lift (dfm = 50°).

Longitudinal Characteristics of the Model With Flap Deflection
and Two Engines Operating

Figure 12 shows the longitudinal characteristics of the model with the
main and auxiliary flaps deflected 40° and only the inboard engines operating
at equal thrust. Figure 13 compares two inboard engines with four engines
for trimmed 1ift, drag, and pitching-moment coefficients. Note that trimmed
1ift and drag coefficients were essentially the same for both configurations
(see also refs. 1 and 6) while nose-down pitching-moment coefficient values
with only the inboard engines operating were approximately 50 percent of the
values for four engines. This result suggests that a four-engine jet trans-
port with two side-by-side engines located close to the fuselage may reduce
longitudinal trim requirements as well as improve lateral and directional

control with asymmetric thrust.
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Longitudinal and Lateral Characteristics of the Model
With Asymmetric Thrust

The longitudinal and lateral characteristics of the model with left
outboard engine out are limited to an auxiliary flap deflection of 20° and
main flap deflections of 20° and 40° (figs. 14 and 15, respectively). Longi-
tudinal characteristics are not significantly affected by the loss of one
engine. Figure 16 shows a comparison of data for three and four engines.
These data show that 1ift and drag coefficients were essentially unchanged for
the same total Cg. Pitching-moment coefficients were approximately 20 to
25 percent less negative at Cp = 1.6 than those obtained with four engines.

Rolling- and yawing-moment coefficient increased negatively with Cr.

The variation of rolling- and yawing-moment coefficient with sideslip is shown
in figure 17 with the operation of three and four engines at &g = 40° and

m
Gfaux = 20°. In each case the dihedral effect is larger with jet augmentation
(Ct > 0), but rolling-moment coefficients were more negative with one engine
out because of the 1ift loss on the left side. The model was directionally
stable for the sideslip range (4° to -16°) investigated, and CnB remained

the same with or without jet augmentation. The variation of the ratio
CZB/CHB, an important handling quality parameter, with jet augmentation was

greater with three engines than with four engines as shown in figure 18. At
Ct = 1.0, the value of CZB/CnB was 1.4 times greater than that with four

engines and two times greater than that with Cg = 0.

Effect of asymmetric auxiliary flap deflection- Figure 19 shows the
longitudinal and lateral characteristics of the model with asymmetric auxil-
iary flap deflection and with one engine out. Figure 20 shows the effective-
ness of differential auxiliary flap deflection for roll control under these
conditions. Nearly trimmed roll was attained over the range of Cp values
investigated. The use of differential flap deflection, however, increased
yawing-moment coefficient approximately 60 percent.

Comparison of Flap Lift Increment With Theory

Theoretical jet-flap-induced lift increments were calculated assuming
that the jet efflux spreads over the entire span of the flap. The measured
effective jet angle and resulting force were used with the method of refer-
ence 7 to calculate the theoretical curves shown in figure 21. At Sfm = 20°,

good agreement was obtained between measured and theoretical values with

8¢ = 0° and 20°, but poor agreement was obtained with §&f = 40°. At
aux aux

8¢ = 50°, poor agreement was obtained with 3§ = 0°, 20°, and 40°. The
m i faux

values measured at Cy = 0 were always less than the theoretical values. This
T Y

suggests that some jet exhaust flow is required to attach the local airflow
over the flap.

A-3523 7



Estimated Flight-Path Control Characteristics Using Auxiliary Flap
During Takeoff and Descent

Figures 22 through 25 show the longitudinal characteristics of the model
at T/W = 0.40 and 0.50 (four engines operating) and 0.30 and 0.375 (represent-
ing three engines operating). These curves were obtained by interpolation of
the data in figures 5 through 8 with four engines operating. The data with
three engines operating were obtained from these figures since the effect of
one engine out on the longitudinal characteristics was small for the same
thrust as shown in figure 16. In the following analysis it is assumed that
the aircraft can be trimmed with one engine out and the three remaining
engines at full power.

Takeoff- Figure 26 shows the variation of the steady-state flight path
angle! with auxiliary flap deflection at 1.2 Vg (1 g flight) for main flap
deflections of 20° and 30°. At either main flap deflection, variable auxiliary
flap deflection provides a wide range of flight path climb angles with an out-
board engine inoperative (T/W = 0.3 and 0.375). However, at T/W = 0.30 and
th = 30° the auxiliary flap did not provide a wide range of positive climb
angles. Maximum climb angles of 3.7° and 6.1° are attainable at T/W = 0.30
and 0.375, respectively, with 6fm = 20°. As expected, four engines provided a

greater climb angle range than did three engines for both main-flap deflections
(maximum 7Y attained is 12°, T/W = 0.50, Gfm = 20°, Gfa C 0°). The varia-
u

tion of forward speed with auxiliary flap deflection is presented in figure 27
for the flight path angles in figure 26. The forward speeds (1.2 Vg) needed to
maintain either a rate of climb of 1.52 m/sec (300 ft/min) or a steady gradient
of 3 percent? (1.7°) are given in figure 27 for W/S = 3352, 4070, and 4788 N/m?
(70, 85, and 100 psf). Results that meet the climbout requirement are presented
below. The table shows that the requirement is met with either main-flap

5 W/S = 3352 N/m2 W/S = 4070 N/m2 W/S = 4788 N/m2 |
e T/W {70 psf) (85 psf) (100 psf)
deg Y, 1.2 Vg, Y, 1.2 Vs, Y, 1.2 Vs,

deg | m/sec (knots) |deg m/sec (knots) |deg| m/sec (knots)
0.30 | 2.0 44.5 (86.5) |1.85 48.8 (94.9) 1.7 52.9 (102.9)

20 .375{2.25} 40.3 (78.4) |2.00 44.0 (85.7) 1.8 47.7 (92.8)
30 .30 | --- -—- 1.7 51.0 (99.2) 1.7| 55.4 (107.7)
L3751 2.1 41.0 (79.8) j1.95 45.1 (87.7) 1.8] 48.8 (95.0)

1Flight-pathvangle was computed as follows (see figs. 22-25):
sin y = T/W - D/W + [(dv/dt)/g]
Assume steady 1 g flight (dv/dt = 0)
sin vy = Cp/Cp, Ciq S =W Cpg S=T-D

2This climbout requirement is based on the tentative Federal Air
Regulations of reference 8 for climb with landing gear retracted and one

critical engine inoperative.
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deflection except at T/W = 0.30, W/S = 3352 N/m? (70 psf), and 6fm = 30°. A

main-flap deflection of 20° is the better take-off flap setting because the
requirement is met at lower speed.

Landing- Figure 28 shows the variation of the flight path angle with
auxiliary flap deflection at 1.3 Vg (steady 1 g flight) for main flap deflec-
tions of 30°, 40°, and 50°. Positive climb angle using auxiliary flap deflec-
tion with one outboard engine inoperative is available only at 6fm = 30°

(T/W = 0.30 and 0.375) and Gfm = 40° (T/W = 0.375). With T/W = 0.375 maxi-
mum climb angles of 6.8° and 2.2° are attained at 8¢, = 30° and 40°, respec-

tively. With all engines operative, positive climb angles are attained at any
of the three main-flap deflections. The variation of approach speed with
auxiliary flap deflection is presented in figure 29 at the flight path angles
shown in figure 28. The forward speeds needed for 1 g flight to maintain a
rate of climb of 1.02 m/sec (200 ft/min) with one engine inoperative during a
balked landing approach are indicated by tick marks in the figure and are
tabulated below. This landing requirement is again based on the tentative

W/S = 2633 N/m2 W/S = 3352 N/m2 W/S = 4070 N/m2
8¢ » (55 psf) (70 psf) (85 psf)
deg Y 1.3 Vg, Y, 1.3 Vg5 Y, 1.3 Vg»

deg | m/sec (knots)| deg | m/sec (knots)| deg | m/sec (knots)

30 | 0.30 | 1.35| 43.5 (84.7) | 1.2 | 48.9 (95.1) | 1.1 | 53.6 (104.4)
30 .375| 1.55| 38.3 (74.5) | 1.35| 43.1 (83.8) | 1.25| 47.5 (92.4)
40 375 1.55 | 37.7 (73.4) | 1.4 | 42.6 (82.9) | 1.3 | 46.6 (90.6)

regulations of reference 8. At T/W = 0.30, the requirement is met only for

a main flap deflection of 30°. Although main-flap deflections of both 30° and
40° meet the requirement at T/W = 0.375, a flap deflection of 40° is a better
landing flap setting because of the lower approach speed and greater descent
angle range available during descent (fig. 28).

Figure 30 show the variation of flight path angle with auxiliary flap
deflection at 1.2 Vg for main flap deflections of 30° and 40°. A substantial
positive climb angle range (fig. 30) with an engine inoperative is available
using a main flap deflection of 30° at T/W = 0.30 and 0.375. The forward
speeds needed to satisfy the climbout requirement are shown in figure 31.

The investigation of reference 9 shows that the use of a rapidly respond-
ing auxiliary flap can provide not only flight path angle change but can also
provide a more rapid build-up in normal acceleration than elevator control.
The maximum pull-up incremental accelerations for the model investigated are
presented in figure 32 at forward speeds of 1.2 Vg and 1.3 Vg. This figure
shows that 0.3 g is available for the 1.3 Vg approach and 0.2 g for the
1.2 v approach. Figure 33 shows the calculated incremental normal accelera-
tion available based on trimmed level flight at 20° auxiliary flap deflection,
the midpoint of the useful Gfaux range as shown in figures 23, 24, and 25.



The angle of attack and CLt . values for trimmed flight (a, = 0) are tabu-
Tim
lated below for the approach speed 1.3 Vg. Flight studies (refs. 10 and 11)

T mw=0.3 | T/W=o0.40
W/S = 4070 N/m? W/S = 4070 N/m?
Se C (85 psf) CL (85 psf)
dfm g’ Ltrim approach speed zé gé trim | approach speed gé
°8 | cee 1.3 Vg, £ & 1.3 Vg, g
m/sec (knots) m/sec (knots)
30 7.5 | 2.53 | 51.2 (99.6) | -1.7]5.5] 2.53 51.2 (99.6) | 3.2
40 6.8 | 2.96 47.3 (92.0) -1.9|4.0| 2.9 47.3 (92.0) | 1.0
50 | 4.5 3.11 46.2 (89.8) | -6.1|1.4) 3.11 |  46.2 (89.8) |-3.9 |

have indicated that 0.2 g is a reasonable margin for maneuvering during the
landing approach. This criterion is met when the main flap is deflected 30°
or 40° at T/W = 0.40. With the main flap deflected 50°, ap values ranged
from -0.22 to 0.12 g at T/W = 0.30 and -0.27 to 0.13 g at T/W = 0.40.

SUMMARY OF RESULTS

An investigation of a large scale externally jet-augmented double-slotted
flap transport model has been conducted to determine the aerodynamic charac-
teristics of the model. Significant results of the investigation are
summarized below.

Jet exhaust impingement on the trailing-edge flap surfaces with C; = 2.0
increased maximum 1ift by as much as 3.5 times the maximum 1lift at Cp = 0.
An auxiliary flap provided a method of direct-1ift control and had a useful

range of 40°.

For a given Cy the operation of two inboard engines with symmetrical
thrust resulted in essentially the same 1lift and drag coefficient values as
those obtained with four engines, but 50 percent reduction of pitching-moment
coefficient values also resulted.

Good agreement was obtained between measured 1lift with flap deflection
and jet flap theory (ref. 7) at the low flap deflection &g = 20° but not at
m

the higher flap deflection &g = 50°.

Performance computations indicate that an aircraft based on the test
configuration could meet tentative Federal Air Regulations for climb during
takeoff or balked landing with one engine inoperative and landing gear
retracted. For the take-off condition a main-flap deflection of 20° with
auxiliary flap deflected can provide a rate of climb of 1.52 m/sec (300 ft/min)
at approximately 44.2 m/sec (86 knots) with one outboard engine inoperative.
For a balked landing condition a main-flap deflection of 40° with auxiliary

10



flap deflected can provide a rate of climb of 1.02 m/sec (200 ft/min) at
approximately 46.8 m/sec (91 knots). The auxiliary flap could also provide
a normal acceleration response of +0.2 g at an approach speed of 47.3 m/sec
(92.0 knots) with Gfm = 40°,

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, April 16, 1971
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<+——-4,60 {15,10) ———|

2,81 . Horizontal Vertical
(9.22) Wing Tall Tall
1,60 {5.265) )
/ Aspect ratio 7.82 3.56 1.46
-\ Tip chord/root ehord 0,33 0,44 0,45
Area m? (ft%) 16,85 (181,24)| 4,64 (50,0) | 2,66 (27.5)
Airfoil section See note 2 66-010 0009
B.74 0.28 {0,91) ID"—t
{18,82) T
2,1{7.00
{Approx,} 0,72 (2,36)
Note:
1. All dimensions In meters {feet)
except as noted,
2, Basic wing t/e = 0,12 {root) &
0.09 (tip), 65 airfoil thickness
0,73 (2,30} distribution with 230 mean line,
0,82 (2,70)
Wing incidence 2°
thrust axes 4.6° relative 1,93
/ to wing chord plane (6,34)
1,23
{4,06 OD)
i >

132h‘
{6,99) ™

(a) General arrangement of the model.

Figure 2.- Geometric details of the model,




LT

5.74 (18.82)

n=0.11 n=0.28

7=0.49 ==0.50
! Pylon I
2.21 }
{7.24) I
{ A
|
!
- i
| Basic wing
WE"Q i leading edge
|
Fuselage
outline
i
0.73 (2.39)
1

0.01c

WCP

8¢ =35 (7=10.11 to 0.48)
$g =45 (M1=0.50101.0)

Same contour
as wing

0.15¢

0.06¢

Secion A— A

Note: All dimensions in meters (feet) unless otherwise noted.

(b) Leading-edge slat.

Figure 2.- Continued.
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0.70c line {reference)

STREAMWISE DIRECTION
MAIN FLLAP ORDINATES AUXILIARY FLAP ORDINATES
X, %C yy- %¢ v, %c X, %C Yy %c Y. %e
0 -1.274 -1.274 20.000 -0.348 -0.348

0.448 -0.314 -2.018 20.274 0.049 -0.679
0.814 0.041 -2.166 20.502 0.251 -0.743
1.543 0.603 -2.420 20.731 0.396 -0.792
2,269 1.023 | -2.550 21.416 0.686 -0.823
3.003 1.377 ' -2.548 21.872 0.799 -0.807
4,448 1.802 —_ 22328 | 0871 | —
5.888 2.252 -2.342 22,783 | 0.903 —
7.333 2.519 ~-2.207 23.238 0.902 -0.700
8.755 2.564 — 23.692 0.853 —_

10.181 2511 — 26.308 0.500 -0.410

11.612 2.392 -1.764 30.000 0.058 -0.062

16.902 —_— -1.250

17.547 1.685 —

17.823 — -0.997 |Note: All dimensions in meters (feet)

18.743 — ~0.502 except as noted.

19.660 — 0.073

19.962 1.375 —

20.585 —_ 0.501

21.498 —_ 0.856

22.410 1.097 0.968

0.224c !

<——X—>{

0.006 (0.02) (typical)

Wing chord plane /_'Bv_t
T = 7 4% M
=YL h YL / / *
0.04¢ T 0.100c Aucxiliary flap

rTO.OS (0.11) (typical) reference
|

0.300¢

1.000c
L 0.02 (0.07) (typical)

0.05¢ !

) ) Pivot point
Pivot point
Section A — A (typical)

(c) Trailing-edge flap detail.

Figure 2.- Continued.
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.20c .80c Otc gap

284(932) ‘ with 8 "= 50°
Nacelle pylon //7 Wina chord oo +
___’/\ .17¢ inbd. nac —F—__] - +
1).19(: outbd. nac 0;),6 \/r\
03{0.1 =% o ___EE’_J_
i 3)|0.28 o e
Engine (0.53)
-] D &(0.91) iD f
Q— . .
Exhaust Fixed pivot ’)\
\4——'0 72 (2.36) deflector points Sfaux
T-58 tailpipe Ejector

All dimensions in meters {feet) except as noted
¢"" - local wing chord

(d) Jet-augmented flap arrangement.

Figure 2.- Concluded,
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a) ¢ = Q°
(2) faux

Figure 5.- Longitudinal characteristics of the model with main flap deflected 20°.
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flap deflected 40°.

Figure 7.- Longitudinal characteristics of the model with the main

62



0¢

- "‘h“*"i%%ﬂh&“*"’ﬁiﬁ:iﬁmBis“"’H“I . ... . - nf“'umff" . “‘&Eiii%iﬁi
!m,}i {é ?;;_ i i Ei TP .Wh

b) 8 = 20°
( ) faux

Figure 7.- Continued.




1¢

- A e N — X ] S
A T I e [ ootk
B O e £ e Y. S S YA :
DR F e e R 7 O S [/
g BB (—— B
S Aol H

Cr =
D027 _

= = — e~ — -0 054 -

et

—A1.027
N 1.45

s
P !
e

4
Co

.6

.8

1.0

¢) 8¢ = 30°
( ) faux

Figure 7.- Continued.

20

24

0 -2

N e |

mEN
-

R

-4

—.6

c

m

-8 —-1.0 -1.2



[

0 4 8 12 16 20 0 -2 -4
a, deg

) s = 40°
faux

Figure 7.- Continued.

-6

-8 —-1.0 —-1.2 -14

m




¢e

g 1 - L ‘.;;,ll;i-_,_, U

Figure 7.- Concluded.




12

*-———‘?' T

— “‘,l"‘“ ﬁiiir

a) § = Q°
(2) faux

Figure 8.- Longitudinal characteristics of the model with main flap deflected 50°




S¢

5.2 S o

48—

4.4 i

7
N, ,/' i
3.6 _4f -

...0 0 .
0 0.26 —
-0 0561

— | P A 1.00 -
I TN 1.41

—4 0 4 8 12 16 20

(b) & = 20°
faux

Figure 8.- Continued.



9¢

Figure 8.- Continued.



LS

3
,".g o

I - NN

T -

o
A

- g

d} ¢ = 50°
(@) faux

Figure 8.- Concluded.




== =
=== =

p— = ppnteshassntun e NOSU MO i Rk R - 7
\ it ettt il

L1
s LibrTT

aami

B
FH
o

yiss

with auxiliary flap deflection.

max

20

10

Figure 9.- Variation of trimmed Cf

38



A

AN

+

50

40

Figure 10.- Variations of resultant static jet deflection angle and turning

Oo, 5d = 150.

efficiency with auxiliary flap deflection, o

39



ov

1}
[\
o

o

(b) 8¢ = 50

Figure 11.- Variation of lift coefficient with gross thrust

coefficient; o = 0°.



2 T o TTTTTTIITTTT oo T T T T N . T

Figure 12.- Longitudinal characteristics of the model with the operation of two inboard engines;
8¢ = 40°, bp = 40°.
m
aux

18%



42

=

PR L edt
e s O
TR S8 3
EEANG WL f i s
H N
H S h Ik
E© Mitih
B Ay NI
H o clikah M
R h
R
N Phi
b P
M
N l_l
~ 1
I i
i
- T
i
[H
i
r i
T ' i
i ;
: T
TR
o) )
— |
|
£
()
= (hrarjiiiit i
ST o HHON Fri K [LRpE
Er @ e fEH co i
N 53 e
S~ o o L
Wu 9 e 1 Y _
) c I L
H [<H] N * al L h n
i g T HH : h i
Al
L S 8 HH PN »_ 3
=TI Fas! \ N
H m_nb m HHH L i Lr. !
H > Lt i L
H o = = i n |
W Hxid, | )
H =xas AN T
1 O D N * i i
g SRR
EEEEH i b ;
e |
i |
sl |
B 4 |
e ]
mag L 1l
Eiiill il |
< @ ©
—
= TITH
4 LG L
[ S Hmo.o
JEeghs! O g ;
zxun] 5 4 w
am| LYY A! Al ni
s X IR m
T \ T \ i
sl NN R |
\ !
P ZAVERY —-— _—- wr m
AR
XN rr i N i 1
i NLRIHENI
Y I SAENH
bl P! T i
&) .we:un rnnnu J“..r !.z u“1
manahd Neih LY gl
B NN NN T
eEcEtaatteiit] IR
EEcei tives b il it
isdisit TR TR LT
H i X i
i i ¢_;
B | |
T _ P
1] < ™
kel
@
E
EO
c
T

1.2

= 40°.

S
faux

Figure 13.- Comparison of 1ift, drag, pitching-moment coefficients for operation of two inboard engines
and four engines; Gfm = 40°,



1%

5.2 SR —— S e e

(a) Longitudinal characteristics.
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